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SUMMARY 

The  60° delta-wing XF-92A airplane  has  attained  normal-force  coeffi- 
c ients  on the  order of 0.7 i n   t he  Mach  number range from 0.6 t o  0.9. Mach 
numbers up t o  1.01 have been attained  during  dives a t  lower l i f ts .  In  the 
present  tests,  measurements were made of buffet-induced  fluctuations  in 
normal acceleration  at   the  airplane  center of gravity and of f luctuations 
in   s t ructural   shear   load of t h e   l e f t  wing. The a l t i tude  range of the 
investigation  varied from 25,000 t o  38,000 f ee t .  

Buffeting was experienced a t  normal-force coefficients on the order 
of 0.2 a t  Mach numbers up t o  0.88  but  existed a t  normal-force coefficients 
less   than 0.1 a t  Mach numbers between 0.9 and 0.96. Buffeting was not 
encountered a t  Mach numbers between 0.96  and 1.01 a t  low l i f t s .  

A t  the   a l t i tudes of the  present  investigation,  the  buffeting encoun- 
tered below the   reduct ion   in   s tab i l i ty  boundary was barely  noticed by the 
p i lo t .  Above the   reduct ion   in   s tab i l i ty  boundary the  pilot   described  the 
buffeting  as "moderate," b u t   i n  comparison wi th   the   s tab i l i ty   d i f f icu l t ies  
experienced by the  airplane,  the  buffeting was not  considered a problem. 
In  general, the variation of buffet   intensity  with Mach  number and l i f t  i s  
similar t o   t h a t  of other  fighter-type  airplanes  except  that  the  various 
levels  of buf fe t   in tens i ty  occur a t  lower  values of l i f t  and angle  of 
attack. A t  a dynamic pressure of 300 pounds per  square  foot  the peak 
values of wing buffet   loads approached 10 percent of the estimated design 
limit load and below a normal-force coefficient of 0.6 the wfng buffet 
loads approached 5 percent of the  estimated  design limit load. 
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The  buffeking  encountered  by  current  airplanes  can  be  objectionable 
from  both a structural  and a handling-qualities  standpoint  and  since  the 
exact  mechanism  of  buffeting  is  as  yet  not fully understood,  it  is  desir- 
able  to  document,  insofar  as  possible,  the  general  buffeting  character- 
istics  of  various  current  airplane  configurations.  It  is  the  purpose  of 
this  paper  to  present  the  buffeting  characteristics  of  the 60° delta-wing 
XF-92A  airplane,  and  to  show  the  regions  where  the  airplane  encountered 
buffeting  and  the  degree  of  buffeting  experienced.  Measurements  were  made 
Of buffet-induced  fluctuations in normal  acceleration  at  the  airplane ten- 
ter  of  gravity  and  of  fluctuations in structural  shear  load  of  the  left 
wing.  The  data  are  presented  for  normal-force  coefficients  up  to  about 
0.7 in  the  Mach  number  range  from 0.6 to 0.9 and  for  lower  normal-force 
coefficients  at  Mach  numbers  up  to 0.96. 

The  flight  tests  of  the  XF-92A  airplane  were  conducted  by  the  NACA 
High-speed  Flight  Station  at  Edwards,  Calif.  The  results  of  various 
other  investigations  of  the  flight  characteristics  of  the  XF"92A  airplane 
are  reported in references 1 to 3 .  

SYMBOLS 

cNA 

kp 

M 

M.A.C. 

Nw 

airplane  normal--force  coefficient, ss 

wing  panel  normal-force  coefficient, - NW 
qsw 

acceleration  due  to  gravity,  ft/sec2 

pressure  altitude, ft 

free-stream  Mach  number 

mean  aerodynamic  chord,  ft 

aerodynamic  normal  force on wing  panel,  lb 

airplane  load  factor 

dynamic  pressure,  lb/ft2 

total  wing  area,  ft2 - 
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area of wing outboard of strain-gage  station ( f i g .  3) and 
herein  defined as wing panel, f t 2  

v structural   shear  load  acting normal t o  wing panel 

W a i r p l m e  weight, lb 

wW weight of l e f t  and r igh t  wing panels, l b  

U angle of attack, deg 

h n  incremental  fluctuation of normal acceleration a t  center 
of gravity due to   buffet ing,  kg units 

(aa, )AV 
incremental  acceleration that would result from di rec t  

action of twice  the measured wing buffet  load on a r i g i d  
body of mass equal t o  tha t  of the  present  airplane w i t h -  

out wings, 2AV w - ww 

coefficient of incremental normal acceleration due t o  

Whn buffeting , - 
ss 

x v  coefficient of incremental  struc-bral  shear  load of the 

wing panel, - AV 
qsw 

AV incremental  structural  shear  load normal t o  wing panel due 
to   buf fe t ing ,  k l b  

‘e longitudinal  control  angle, deg 

Subscripts : 

max m a x i m u m  

AIRPLANE 

‘The Convair XF”92.A. is  a -single-place 60’ delta-wing airplane powered 
by a turbojet  engine and afterburner. The airplane  has a delta-shaped 
ve r t i ca l   f i n   bu t  no horizontal ta i l .  Longitudinal and l a t e ra l   con t ro l  i s  
achieved by elevons which comprise the e n t i r e   t r a i l i n g  edge of the w i n g .  
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There are  no leading- or  trailing-edge slats o r  f laps ,  no w i n g  fences, 
and no dive  brakes. A three-view d r a w i n g  of the airplane i s  shown i n  
figure 1 and  photographs of the airplane  are  presented  in  f igure 2. 
Table I lists the  physical   character is t ics  of the  airplane. 

The construction of the airplane is conventional. The fuselage is  
stressed-skin semi-monocoque with  skin backed up by ring-shaped  frames. 
All fue l ,  test equipment, and instrumentation i s  carried  within  the  fuse- 
lage. The wing i s  of  four-spar  construction as shown in   f igure  3 .  The 
forward and main spars are continuous  through the  fuselage. The rear 
spar i s  pin-jointed a t  the  side of the  fuselage. The ribs and lower skin 
are  cut  out  forward of the main spar  for  the  landing-gear  well. The 
landing-gear  support i s  attached  directly  to  the  fuselage  structure and 
only  the up-lock is at tached  to  the wing s t ructure .  

Resonant structural   frequencies were obtained  during ground vibration 
tests of the  airplane conducted by the  manufacturer  (ref. 4 ) .  The natural  
structural   frequencies and  corresponding mode shapes of the wing were 
determined for  frequencies up t o  50 cycles  per second.  During  resonant 
vibration,  appreciable  deformation of the wing occurred  along  chord l i nes  
in   add i t ion   t o  spanwise  deformation.  Sketches from reference 4 showing 
the relative  amplitudes  of  various  points on the airplane  for  three fre- 
quencies  are  reproduced in   f i gu res  4( a)  t o  4( c ) . The wing and fuselage 
node l i nes   a r e  shown i n   f i g u r e  4( d )   f o r   a l l  of the wing resonant  fre- 
quencies  determined during vibrat ion  tes ts .  

INSTRUMENTATION AND ACCURACY 

Instruments 

The airplane was equipped  with  standard NACA recording  instruments 
f o r  measuring airspeed,  altitude,  angle of attack,  control-surface  posi- 
t ion,   pressure  distribution on the left  wing, and three components of 
acceleration.  In  addition, motion pictures were taken of tufts glued 
t o  a portion of the r igh t  wing. The airspeed head  and angle-of-attack 
vane were mounted on a nose boom projecting from the   a i r   in le t   duc t .  
(See f i g .  1.) St ra in  gages are ins ta l led  a t  the roots of both wings 
( f ig .  3 )  to measure shear  load, bending moment, and pitching moment. A 
fluid-damped  Statham  accelerometer,  maintained a t  a constant  temperature 
by a  thermostatically  controlled  heating  jacket, was ins ta l led  near  the 
airplane  center of gravi ty   for  measuring f luc tua t ions   in  normal accel- 
eration  during  buffeting. The s t r a i n  gages  and  Statham  accelerometer 
were recorded on an  18-channel  Consolidated  recording  oscillograph. All 
instruments were synchronized by a common timer. 
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Strain-Gage  Calibration 

The s t r a i n  gages were ca l ibra ted   in  terms  of shear, bending moment, 
and pitching moment by applying  concentrated  static  loads a t  numerous 
points on the  structure. By e l ec t r i ca l  combination of three shear-gage 
bridges,  located on the  front,  center, and rear  wing spars, it was pos- 
sible  to  obtain  the  shear  load on t h e   l e f t  wing panel from the  output on a 
single  oscillograph  channel  such that 

Structural   shear  load = 6,050 x Combined strain-gage  output 

During buffeting,  incremental  fluctuations  in the output of the combined 
shear gages are,  accordingly,  proportional  to  the  fluctuations  in  struc- 
tural shear load. The accuracy  with which the constant of proportion- 
a l i t y  (6,050) was determined  during s ta t ic   ca l ibra t ion  of the   s t ra in  
gages i s  estimated ‘to be k? percent. 

Accuracy 

The estimated  accuracies of the quantit ies  presented  in this paper 
are  as  follows: 

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i O . O l  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f O . O l  

NA 
c . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . * 0 . 0 2  

NW 
a,  deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  tl.0 
6,, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.5 
X+, percent . . . . . . . . . . . . . . . . . . . . . . . . . .  i 5  
xv, percent . . . . . . . . . . . . . . . . . . . . . . . . . .  k6 

The airspeed  instal la t ion was calibrated by using  the  radar  phototheodo- 
l i t e  method  of reference 5 .  The recorded  angle of attack was corrected 
f o r  nose-boom bending (0.16~ per g)   but  no corrections  for vane f loat ing,  
upwash, or a i r  loads on the boom were made. Fluctuating  accelerations, 
measured w i t h  the Statham  accelerometer, were recorded f l a t  (within 25 per- 
cen t )   to  60 cycles  per second. All strain-gage  outputs were recorded f la t  
t o  a t  least 60 cycles  per sec6nd. 

TESTS 

The data  presented i n  this  paper were taken  during  seven f l i g h t s  
made for the purpose of determining  the  longitudinal  stability and damping 
of the  airplane. The f l ights   consis ted of dives t o  supersonic Mach nun- 
bers (%= c 1.01) and of tu rns   in i t ia ted   in   the  Mach  number range from 

,- 



0.72 t o  0.95. From these tests it was des i red   to  determine the e f f ec t  
of l i f t  coefficient,  angle of attack, and Mach  number on the  buffeting 
of  the  airplane a t  35,000 fee t .  However, because of low thrust and  high 
drag due t o  l i f t ,  large  a l t i tude  losses  were incurred  during  dives t o  
high Mach  number and during  turns i n  which the  pilot   at tempted  to  hold 
reasonably  constant Mach number. In addition,  the  airplane  encountered 
a region of marked reduction in   longi tudina l   s tab i l i ty  a t  moderate l i f t  
coefficients w i t h  the result that "pitch-ups"  and  pitching  oscillations 
within  this  region  occurred. In order  to  obtain any data a t  moderate or  
high l if ts ,  it w a s  necessary t o   u t i l i z e  the data taken  during  essentially 
uncontrolled maneuvers. However, data taken  during  periods of extreme 
positive  or  negative  pitching  velocity  are  not  presented  herein. 

Ty-pical records  taken  during  buffeting  flight  are  reproduced  in  fig- 
ure 5 .  The quant i t ies  shown  on the  oscillograph  record  are  as  follows: 

Quantity Trace number 

Shear, f ront   spar  Left wing 
Shear,  front  spar  Right wing 
Shear,  rear  spar  Right wing 
Torque gage Right wing 
Combined bending Left wing 
Torque gage Left wing 
Combined shear  Right w i n g  
Shear, main spar  Right w i n g  
Combined bending  Right wing 
Shear, main spar  Left w i n g  
Combined shear Left wing 
Normal acceleration at center of gravity (Statham) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
LL 
12 

Normal acceleration  indicated by a low-frequency  air-damped acceler- 
ometer i s  included in   f i gu re  5 t o   i l l u s t r a t e  the low-frequency fluctuations 
in   accelerat ion.  The magnitude of the buffeting  indicated by this low- 
frequency  instrument was not  evaluated. The values of buf fe t   in tens i ty  
presented  herein were determined by measuring the  amplitudes of the  f luc- 
tuations of oscillograph  channels 11 and 12 which measured l e f t  w i n g  shear 
and normal acceleration a t  the airplane  center of gravity as indicated by 
the Statham  accelerometer,  respectively. (Data obtained from the records 
reproduced i n   f i g u r e  5 are  presented  subsequently in   f igure  8(a) . )  

All data were taken with the airplane  in  the  clean  conation  (gear 
re t racted) .  Maximum l i f t  as evidenced by a leveling  or  decrease  in air- 
plane  normal-force  coefficient  with  increase i n  angleaof  attack was not 
attained.  Actual test  limits are  shown i n   f i g u r e  6. Altitudes  for  the 
tes ts   var ied from 38,000 t o  25,000 fee t .   In   o rder   to  minimize the  effect  
of alt i tude  variation, it has  been assumed herein that the magnitudes of 
acceleration  and  load  f luctuations  are  directly  proportional  to dynamic 
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pressure. It should be noted, however, that some data have been presented 
i n  reference 6 which indicate  that   buffet  magnitudes may be more propor- 
t ional  to  the  square  root of dynamic pressure  than  to  the first power. 
Should the results of reference 6 be applicable  to  the  present data, the 
coefficients of buffet  loads and accelerations  presented  herein would be 
low  by a factor  of the  square  root of dynamic pressure. 

RESULTS AND DISCUSSION 

B u f f  e t  Boundary 

The buffet  boundary, the boundary for  a reduction in   longi tudinal  
s t a b i l i t y  (ref. l), and the   t e s t  limits of the present  investigation  are 
shown i n   f i g u r e  6. Curves indicating  the  values of normal-force coeffi-  
cient  required  for 1 g f l i gh t   a s   a l t i t udes  of 25,000 and 40,000 fee t   a re  
also shown in   f igure   6 (a)   as  a matter of i n t e re s t .  

The buffet  boundary was determined by inspection of wing strain-gage 
records and records of normal acceleration a t  the  airplane  center of 
gravity. The onset of buffeting was taken as t h e   f i r s t   p o i n t   a t  which 
fluctuations of the  photographic  trace became apparent,  or a t  which an 
increase  in   the  res idual  amplitude of the  trace  occurred,  as l i f t  was 
increased or as speed was changed. The onset of buffeting, as indicated 
by f luc tua t ions   in  normal acceleration, and the  onset of wing buffeting, 
as indicated by wing spar  stress  fluctuations,  occurred  simultaneously. 
For this airplane wing-panel  normal-force coefficient i s  essent ia l ly  cNw . 

equal to   a i rplane normal-force coefficient cNA fo r  values of C NA 

less   than 0.5. Accordingly, the  buffet  boundary presented in   f i gu re   6 (a )  
also  describes the onset of wing buf fe t ing   in  terms of  wing-panel l i f t .  

The onset of buffet ing  in   the Mach  number range from 0.6 t o  0.88 is  
attributed  to  the  occurrence of leading-edge  vortex-type  flow a t  an angle 
of attack of about 5 O .  T h i s  flow  condition i s  described  subsequently. 
The abrupt  decrease i n   t h e  buffet boundary which occurs i n   t h e  Mach  num- 
ber range from  0.88 t o  0.93 probably r e su l t s  from  shock-induced separation 
over the  trail ing  inboard  past  of the wing. Buffeting  existed a t  the min- 
imum values of normal-force coefficient  at tained (CN*= 0.07 i n   t h e  Mach 

number range from 0.93 t o  0.96 but  buffeting was not  detected a t  Mach 
numbers between 0.96 t o  1.01 

) 

(%a> * 
. .  It 'should  be  noted. that  .about  28.  percent of .the  .exposed w i n g   area i s  

ut i l ized  for   longi tudinal   control  and trim. Elevon deflection at the  
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start of buf fe t ing   in   the  Mach  number range from 0.6 t o  0.93 was on the 
order of 3O t o  bo up. A t  a Mach  number of 0.96, elevon  position  varied 
from 2O t o  5' up. The e f f ec t s  of  elevon  deflection on the  buffeting 
character is t ics  of the airplane  are  not known, however, except for   the  
reduction i n  lifting effectiveness of the wing which is estimated  to be 
equivalent  to a decrement i n  on the  order  of 0.05 a t  the  buffet 

boundary. 
cNA 

A t  the a l t i tudes  of the present  investigation,  the  buffeting encoun- 
tered below the   reduct ion   in   s tab i l i ty  boundary ( f ig .  6 ) ,  was barely 
noticed  by the p i l o t .  Above the   reduct ion   in   s tab i l i ty  boundary the air- 
plane has severe  pitch-up and longitudinal  oscil latory  characterist ics 
which are  discussed  in  reference 1. The buffeting  encountered by the air- 
plane above the  reduct ion  in   s tabi l i ty  boundary is  described by the   p i lo t  
as "moderate," but w a s  not  considered a problem i n  comparison with the 
s t a b i l i t y   d i f f i c u l t i e s  experienced by the  airplane. 

Wing Flow Conditions 

W i n g  s tremise section l i f t  coefficients  (obtained from pressure- 
dis t r ibut ion measurements) fo r   f i ve  spanwise stations  are  presented  in 
figure 7(a) f o r  a Mach  number of 0.7. The progressive loss  in   s ec t ion  
l i f t  from the t i p  inboard  as  angle of attack  increased i s  apparent. 
Motion pictures of tufts on a portion of the wing and  evidence of f luc-  
tuat ions  in   the  records of wing pressure a t  each orifice  indicated,  qual- 
i t a t ive ly ,  that, i n  the Mach  number range from 0.6 to 0.93, flow  separation 
occurred  over the w i n g  t i p   a t  angles of a t tack on the  order of 5 O  and 
extended  inboard  along  the  leading edge and over  an  increasing  area of 
t h e   t i p  as angle of attack  increased. These flow  characterist ics  are sim- 
i lar   to   those  descr ibed  in   reference 7 (low-speed t e s t s  of a mock-up of 
the XF-92A airplane and referred  to  as the "NACA 65-series model" there- 
i n )   i n  which evidence  pointed to  the  existence of a separation  vortex 
along the  leading edge of the wing. In  the present tests, the shape of 
the upper wing surface  pressure  distribution did not  clearly  define  the 
existence of a leading-edge  vortex a t  low angles of attack. A t  high 
angles of attack,  the  pressure  distributions, of which figure 7(b) i s  
typical,  exhibited a t rough  paral le l   to  the leading edge. Such a trough 
is  considered  characteristic of vortex-type  flow. 

A t  l i f t  coefficients  close  to the buffet  boundary i n   t h e  Mach  number 
range from 0.87 t o  0.92, pressure-dlstribution measurements indicated  the 
presence of a normal  shock  ahead of the  elevon  over  the  inboard 50 percent 
of the wing, and tuft observations showed the flow t o  be dlsturbed over 
the  trail ing  inboard  part  of the wing. In the Mach  number range from 
0.92 t o  0.96 at C x O.g., the shock appeared t o  be located a t   t h e  elevon 

hinge l i ne .  Above M c 0.97, the  pressure-distribution  data  indicated that 
the shock w a s  at o r  near   the  t ra i l ing edge of the wing. 

NA 
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W i n g  pressure  distributions  for  the XF-92A airplane a t  low l i f t  and 
transonic  speeds  are  presented  in  reference 2. The resu l t s  of pressure- 
dis t r ibut ion measurements a t  higher l i f ts  are  as yet  unpublished. 

B u f f e t  Frequencies 

The frequencies a t  which buffeting  occurred were determined by visual 
spot-check  inspection of strain-gage and accelerometer  outputs which were 
photographically  recorded as a function of time. (See f i g .  5 ) .  The pre- 
dominant amplitudes of acceleration  fluctuations  recorded by the Statham 
accelerometer a t  the center  of  gravity  occurred a t  frequencies on the 
order of 60 and 100 cycles  per second but a t  times  these two frequencies 
were superimposed on fluctuations of 14 t o  15 cycles  per second.  Engine 
vibrations a t  about 200 cycles  per second were also  picked up by the 
Statham accelermeter  with noticeable  amplitude. A low-frequency a i r -  
damped, normal accelerometer,  also  located a t  the airplane  center of grav- 
i t y  and which had negligible  response  to  frequencies above 23 cycles  per 
second, indicated  buffet-induced  fluctuations of 14 t o  13 cycles  per  sec- 
ond. The combined s t r a i n  gages, from which the  increments i n  wing buffet 
shear  load were obtained,  fluctuated w i t h  predominant amplitudes a t  f r e -  
quencies on the  order of 26, 45? and 100 cycles  per second. Fluctuations 
in  the  outputs of individually  recorded  shear gages located a t  the  roots 
of the wing spars  occurred a t  frequencies  similar  to  the  f luctuations  in 
the combined shear-gage  output.  Strain gages ins ta l led   in   the  wing t o  
measwe  bending moment and torque  responded a t  14 t o  15 cycles  per  second 
and a t  about 45 cycles  per second during buffeting.  Frequencies of 
60 cycles  per second and higher were not  observed in   e i ther   the  torque  or  
the bending-gage outputs. 

No appreciable  variation  in  buffet  frequencies w i t h  aerodynamic  con- 
dit ions was observed  within  the  test limits of the  present  investigation. 
The na tura l   s t ruc tura l  modes t o  which the predominant buffet  frequencies 
appeared t o  correspond were a symmetric mode of wing bending a t  14.12  cycles 
per second,  and  a mode of wing torsion. Three torsional modes a re   g iven   in  
reference 4, an  antisymmetric mode at 45.1, a symmetric mode a t  47.6, and 
another  antisymmetric mode a t  48.3 cycles  per second. The  mode shapes f o r  
the 14.12- and the  48.3-cycle-per-second modes were shown in   f i gu re  4 
together w i t h  the node l i nes   fo r  a l l  of the wing natural frequencies. The 
s t ruc tura l  modes t o  which the 60- and  100-cycle-per-second buffet  frequen- 
cies  correspond  are unknown since  the ground vibration  tests  extended  only 
t o  about 30 cycles  per second. 

. .  , ,  , - ,Buffet   Intensit ies 

Typical  values of the  coefficient of incremental normal acceleration 
as measured with the Statham  accelerometer a t  the  airplane  center - 
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of gravity, and the coefficient of  incremental  structural wing shear 
load X,, together  with some pertinent  steady  quantities,  are  presented 

in   f i gu re  8 as a function of  angle of attack. The data were taken  during 
three wind-up turns a t  Mach numbers of approximately 0.7, 0.85, and 0.9. 
The buffet-intensity data, and AC,, were determined by fa i r ing  

envelopes  about  the  fluctuating  accelerometer and strain-gage  records and 
measuring the amplitudes of the fa i red  envelope  each 0.1 second  during 
the maneuver. The envelopes were faired about the records  without  regard 
f o r  the frequency  content of the  record. The values  of AC and E 

thus  represent  the  resultant of acceleration or structural   load  f luctua- 
t ions from 14 t o  100 cycles  per second. The values of AC shown i n  

figure 8 a t  angles of a t tack below the points  indicated  as  "buffet  onset" 
result from the response of the accelermeter   to  engine  vibration. Upper 
l imi t s  are shown faired  about the values of AC and Ev i n   f i gu re  8. 

Such approximate limits are  considered  to  describe the buffeting which, 
i n  general, would be encountered  during similar maneuvers. However, the 
accuracy w i t h  which the  buffet-intensity  data  presented  herein, (which 
were obtained  during maneuvering f l ight)   represent   the buffet in tens i t ies  
that would be encountered a t  some sustained lift coefficient,  cannot be 
estimated. 

%l 

all v 

an 

an 

The in tens i ty  of the  buffeting as measured with  the Statham acceler- 
ometer a t  the  center of gravity AC and as measured with  strain gages a, 
a t  the l e f t  wing root X ,  is summarized in   f i gu res  9 and 10, respec- 

t ively.  The buffet data presented in   these  f igures  were determined, fo r  
the most par t ,  from  approximate l b i t s  fa i red  about measured buffet  inten- 
s i t i e s  as shown in   f i gu re  8. A t  the  higher l i f ts ,  however, it was f e l t  
that upper limits  could  not be accurately drawn and so some representa- 
tive  individual  values of AC! and AC, have been  included in   f igures  9 

and 10 and are plot ted w i t h  flagged symbols. No data were obtained below 
a Mach  number of 0.7 at moderate l i f t  coefficients above the  buffet  bound- 
ary. The data shown in   f igures  9 and 10 a t  high l i f t  below M = 0.7 were 
taken  during  essentially  uncontrolled  pitching  oscillations  following 
turns   in i t ia ted  a t  Mach numbers  on the  order of 0.8. 

an 

In  general,  the  variation of the  buffet   intensity measured a t  the 
airplane  center of gravity with Mach  number and l i f t  ( f ig .  9 )  is  similar 
t o  tha t  of other  fighter-type  airplanes  except that the  various  levels 
of ACan occur a t  lower values of l i f t  and angle of attack. Mach  num- 

ber  appears t o  have small effect  on the  variation of Lu= w i t h  lift and 

angle of attack up t o  a Mach  number of about 0.9. It should be noted that 
the characteristic  decrease and then  increase  with Mach  number in   the  

an 
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normal-force coefficients and angles of attack  that   define  the  buffet  
boundary  and the lower buf fe t   in tens i t ies  i s  confined to   the  small Mach 
number range from 0.88 t o  0.96. 

The wing-panel buffet loads summarized i n  figure 10 have a generally 
similar  variation with Mach  number and l i f t  as the  acceleration data of 
figure 9. It should be realized  that  the  values of ACv are measurements 
of the  incremental  structural  shear  load, and as such, a re   spec i f ic   to  this 
airplane. Design wing limit load  for  the XF-92A is estimated t o  be on the 
order of 28,000 pounds. For a dynamic pressure of 300 lb/sq f t ,  the data 
of figure 10 show tha t  below an  airplane  normal-force  coefficient of 0.6, 
the  fluctuating wing buffet loads approached 5 percent of the  estimated 
design limit load and that the peak values of w i n g  buffet  load  approached 
10 percent of the estimated  design limit load a t  higher l i f t  coeff ic ients .  

The re la t ion  between incremental  wing-panel  load and incremental 
acceleration at the  airplane  center of gravity is  of interest   s ince wing 
buffeting would appear t o  be the major  cause  of fuselage  vibration.  Inves- 
t iga t ion  of this relationship  has, so f a r ,  been  of  very l imited  extent   for  
this airplane. The incremental  acceleration 4 a t  the  airpLane  center 
of gravity is  p lo t ted   in   f igure  11 against   the  acceleration  that  would 
r e su l t  from the  direct   action of twice  the measured wing buffet   load on a 
r i g i d  body  of mass equal t o  that of the present  airplane  without wings. 
The data indicate that the  center-of-gravity  accelerations were from 1.7 
t o  3.5 times the accelerations  that  would r e su l t  from direct   act ion of 
the  buffet  load. 

Cmparisons 

The buffet  boundary  of the XF-92A is compared in   f i gu re  12 with  the 
w i n g  buffet  boundary  of the X-5 airplane a t  60° sweepback (ref. 8) .  It 
may be seen that the buffet boundaries of the two airplanes  are  very simi- 
lar except that the XF-92A experiences wing buffeting  at   angles of a t tack 
on the  order of 4O lower  than  the X-5 and normal-force coefficients on 
the  order of 0.2  lower  than  the X-5. The effect  of buffeting on the maneu- 
vering  capabili t ies of the two airplanes i s  indicated by comparison of the 
values of  normal load  factor a t  which buffeting  occurs. It may be seen 
in   f i gu re   12  that the  early  occurrence.of  buffeting  for  the XF-92.A t o  some 
extent   offsets  the benefits  of the inherent low wing loading of the del ta  
wing. 

L i t t l e  data e x i s t   f o r  comparison w i t h  the wing buffet  loads  presented 
herein.  ..,Extensive measurements of wing buffet   loads 3ncountered  during 
stalls of a propeller-driven..fighter-type airplane have  been presented i n  
reference 6. It was found therein that during a stall of ?-second duration, 
the maximum expected  value  of wing buffet  load would be 12 percent  of wing 
structural   shear  load a t  limit load  factor.  The value of 10 percent  of 
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estimated  design limit load found herein  for  the XF-92A  maximum wing buf- 
f e t   l oad  cannot  be d i rec t ly  compared with the data of  'reference 6 since 
the XF-92A loads were measured  under transient  conditions and the data 
of reference 6 were measured  under steady  conditions. It was also shown 
i n  reference 6 that the maximum buffet  load  increased on the  order  of 
10 percent from stalls of less   than 1-second  duration to  those of  from 
4- t o  5-second duration.  Accordingly,  under  steady  conditions a t  high 
l i f t ,  the maxFmum values of XF-92A wing buffet  load  could approach 18 t o  
20 percent of estimated  design limit load. 

CONCLUDING REMARKS 

The 600 delta-wing XF-92A airplane has at ta ined normal-f orce  coeffi- 
c ients  on the  order of 0.7 in   the  Mach  number range from 0.6 t o  0.9. Mach 
numbers  up t o  1.01 have been attained  during dives a t  lower l i f ts .  In  
the present   tes ts ,  measurements were made of buffet-induced  fluctuations 
i n  normal acceleration a t  the  airplane  center of gravity and of fluctua- 
t ions  in   s t ructural   shear   load of the l e f t  wing. The a l t i tude  range of 
the  investigation  varied from 25,000 t o  38,000 f ee t .  

Buffeting was experienced a t  normal-force coefficients on the  order 
of 0.2 a t  Mach numbers up t o  0.88 but  existed a t  normal-force coefficients 
less   than 0.1 a t  Mach numbers between 0.9 and 0.96. B u f f e t i n g  was not 
encountered a t  Mach numbers between 0.96  and 1.01 a t  l o w  l if ts .  

A t  the   a l t i tudes of the  present  investigation,  the  buffeting encoun- 
tered below the   reduct ion   in   s tab i l i ty  boundary was barely  noticed by the 
p i lo t .  Above the  reduct ion  in   s tabi l i ty  boundary the  pilot  described  the 
buffeting as "moderate,"  but i n  comparison w i t h  t he   s t ab i l i t y   d i f f i cu l t i e s  
experienced by the  airplane,  the  buffeting was not  considered a problem. 
In  general,  the  variation of buffet   in tensi ty  w i t h  Mach  number and l i f t  
i s  similar t o  t ha t  of other  fighter-type  airplanes  except that the  various 
levels  of buf fe t   in tens i ty  occur a t  lower values of l i f t  and angle of 
a t tack.  A t  a dynamic pressure of 300 pounds per  square  foot  the peak 
values of wing buffet loads approached 10 percent of the  estimated  design 
limit load and below a normal-force coefficient of 0.6 the wing buffet  
loads approached 5 percent of the  estimated  design limit load. 

High-speed Flight  Station, 
National Advisory Committee fo r  Aeronautics, 

Edwards ,  Calif., November 15, 1954. 
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TABLE I.- PHYSICAL  CIIARACTERISTICS OF THE XF-92A AIRPLANE 

wing : 
Area. sq f t  . . . . . . . . . . . . . . . . . . . . . . . . .  
Span. f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  
Airfoil   section . . . . . . . . . . . . . . . . . . . . . . .  
Wing-panel area. outboard of root  strain-gage  station. sq f t  
Mean aerodynamic chord. f t  . . . . . . . . . . . . . . . . .  
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . .  
Tip  chord . . . . . . . . . . . . . . . . . . . . . . . . . .  
Taper r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . .  
Sweepback (leading  edge). deg . . . . . . . . . . . . . . . .  
Dihedral  (chord  plane). deg . . . . . . . . . . . . . . . . .  

Root chord. ft . . . . . . . . . . . . . . . . . . . . . . .  

Incidence. deg . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . .  425 . . . . . .  31.33 

. . . . . .  137.1 . . . . . .  18.09 . . . . . .  2.31 . . . . . .  27.13 . . . . . .  0 . . . . . .  0 . . . . . .  60 . . . . . .  0 . . . . . .  0 

NACA 65(06)-006.5 

Elevons : 
Area (total.  both. aft of hinge l i n e )  sq f t  . . . . . . . . . . . . . . .  76.19 
span  (one elevon). f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  13.35 
Chord (aft of hinge  line.  constant  except a t   t i p ) .  f t  . . . . . . . . . .  3-03 

up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

Aileron. t o t a l  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Hydraulic 

Area. sq f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75.35 
Height. above fuselage  center  line. f t  . . . . . . . . . . . . . . . . .  11.50 

Area. sq f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.53 Span. f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.22 
Travel. deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28.5 
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Hjrdraulic 

Length. f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42.80 

Movement. deg 
Elevator : 

Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Ver t ica l   t a i l :  

Rudder : 

Fuselage : 

Power plant : 
Engine . . . . . . . . . . . . . . . . . . .  Allison 533-A-29 with  afterburner 

Rating : 
Sta t i c  thrust a t  sea level.   lb . . . . . . . . . . . . . . . . . . .  5. 600 
S ta t i c  thrust a t  sea level  with  afterburner. l b  . . . . . . . . . . .  7. 500 

Weight : 
Gross weight (560 ga l   fue l ) .  l b  . . . . . . . . . . . . . . . . . . . .  15. 560 
Empty weight. l b  . . . . . . . . . . . . . . . . . . . . . . . . . . .  11. 808 

Center-of-gravity  locations: 
Gross weight (560 ga l   fue l )  . percent M.A.C. . . . . . . . . . . . . . . .  25.5 
Empty weight. percent M.A.C. . . . . . . . . . . . . . . . . . . . . . .  29.2 
Moment of inertia  in  pitch.   slug-ft2 . . . . . . . . . . . . . . . . .  35. 000 

Wing-panel weight . l b  : 
Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  973 
Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l .  08 9 
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Figure 1.- Three-view  drawing of the XF"92A airplane. All dimensions 
in inches. 
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(a)  Three-quarter  rear overhead  view. 
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(b ) Side view. 
L-86484 

Figure 2.- Photographs of XF-92A airplane. 



Strain  gage  installation 

Shear and bending gages 
( 2 four-arm  bridges ) 

I Torque gage 
( 2 four-arm  bridges 1 

/ Elevon 

St rain  gage 
st ation 

Figure 3.- Main s t ruc tura l  elements and strain-gage  bridge  locations. 
XF-92A ai rp lane   l e f t  wing. 
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Fuselage node line 
(Horizontal plane) 

(a) First symmetric wing  bending 
(14.12 cps) 

(b) First antisymmetric wing bending. 
(40.3 cps) 

Figure 4 .- Representative mode shapes and node lines during  manufacturer's 
ground vibration tests. XF-9% airplane. 



(c)  Second  antisymmetric  wing  torsion. 
Wing torslon (48.3 CPS) 

(d)  Wing ond fuselage  node  lines. 
(Honzontal  plane) 

Figure 4. - Concluded. 

___ 
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Figure 5.- "pica1 records taken during  buffeting  flight. 
M = 0.7; % = 30,000 feet .  
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l(F-92A airplane. 
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(a) Variation with Mach  number and normal-force coefficient. 

Figure 6.- Buffet boundary, boundary for  reduction  in  longitudinal stability, 
and test limits of the present  investigation. XF-92A airplane. 



N 
Iu 

20 

1' 

Test l i m i t s - 1  
\ 

P 
16 , 

\ 
\ I 

12- 
Reduction in longitudinal stability - \ 

" I  / I 
"-+"\ 

8 .  

8 " 3 0" n 1 1  
3 

4 .  I 

Buffet boundary-- 

"" 

z 
E 
a 

0LO .65 .70 .75 .80 .85 .9 0 .95 1.00 

M 

(b) Variation with Mach number and angle of attack. 

Figure 6. - Concluded. 
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(a) Variation of section l i f t  coefficients with angle of attack. 

? . . (b.) Isometric view of typical  upper  surface  pressure  distribution. 

1 
Figure 7.- Results of pressure  measuremnts on l e f t  wing at a Mach number 

of 0.7. XF-92A airplane. 

" 
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(a) M = 0.7; hp = 30,000 fee t .  
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(b) M - 0.85; hp = 32,000 feet. 

Figure 8.- Continued. 
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(c) M 0.9; hp = 38,000 feet. 

Figure 8.- Concluded. 



1.0 Unflagged symbols denote faired data 
Flagged symbols denote  individual values ACan 
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(a) Variation  with normal-force  coefficient and Mach number. 

Figure 9.- Intensity  of buffeting at airplane  center of gravity. 
XF-92A airplane. 
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(b) Variation  with  angle of attack and Mach number. 
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Figure 9. - Concluded. 
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(a) Variation with normal-force coefficient and Mach  nuuiber . 
Figure 10.- Coefficient of incremental s t ructural  shear load due t o  

buffeting of the l e f t  w i n g .  XF"92.A airplane. 
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(b) Vasiation with angle of attack and Mach number. 

Figure 10.- Concluded. 
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Incremental acceleration measured at center o f  gravity, Aan 

Figure I".- Relation between incremental normal. acceleration at airplane 
center of gravity and acceleration that would resu l t  from the  direct  
action of wing buffet load on rigid  airplane mass. 
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Figure  12.- C o m p a r i s o n  of the  boundaries  for  the  onset of wing buffet  of 
the XF-92A and the 60° swept-wing X-5 airplanes. % = 35,000 feet; 
W/S for  X-5 = 48.5; W/S fo r  XF-92A = 32.0. - NACA-Langley - 4-28-55 - S26 


